Package: DECIDE (via r-universe)

October 31, 2024

Type Package Title DEComposition of Indirect and Direct Effects Version 1.3 Date 2022-06-06 Author Christiana Kartsonaki Maintainer Christiana Kartsonaki <christiana.kartsonaki@gmail.com> Description Calculates various estimates for measures of educational differentials, the relative importance of primary and secondary effects in the creation of such differentials and compares the estimates obtained from two datasets. License GPL (>= 2) LazyLoad yes NeedsCompilation no Date/Publication 2022-06-06 23:20:05 UTC Repository https://christianak.r-universe.dev RemoteUrl https://github.com/cran/DECIDE RemoteRef HEAD

RemoteSha 991a1674ba959c4d5694adf03ea3c1abb924cd5f

Contents

DECIDE-package	2
compare.relimp	3
create.classdata	4
plot_transition	5
prepare.data	
print_relimp	7
relative.importance	8

11

Index

DECIDE-package

Description

Calculates various estimates for measures of educational differentials, the relative importance of primary and secondary effects in the creation of such differentials and compares the estimates obtained from two datasets.

Details

Package:	DECIDE
Type:	Package
Version:	1.3
Date:	2022-06-06
License:	GPL (>= 2)
LazyLoad:	yes

See relative.importance.

Author(s)

Christiana Kartsonaki

Maintainer: Christiana Kartsonaki <christiana.kartsonaki@gmail.com>

References

Kartsonaki, C., Jackson, M. and Cox, D. R. (2013). Primary and secondary effects: Some methodological issues, in Jackson, M. (ed.) *Determined to succeed?*, Stanford: Stanford University Press.

Erikson, R., Goldthorpe, J. H., Jackson, M., Yaish, M. and Cox, D. R. (2005) On Class Differentials in Educational Attainment. *Proceedings of the National Academy of Sciences*, **102**: 9730–9733

Jackson, M., Erikson, R., Goldthorpe, J. H. and Yaish, M. (2007) Primary and secondary effects in class differentials in educational attainment: The transition to A-level courses in England and Wales. *Acta Sociologica*, **50** (3): 211–229

compare.relimp

Compare estimates of log odds, log odds ratios and relative importance obtained by two datasets

Description

Computes 95% confidence intervals for the differences in log odds of transition, log odds ratios and relative importance estimates between the two datasets. Also calculates chi-squared test statistics and p-values for testing whether the differences are different from zero.

Usage

compare.relimp(dataset1, dataset2)

Arguments

dataset1	is the first dataset; a data frame with 4 columns, in the following order: 1: student's ID, 2: class, 3: transition (0 if not, 1 if yes) and 4: performance score.
dataset2	is the second dataset; a data frame with 4 columns, in the following order: 1: student's ID, 2: class, 3: transition (0 if not, 1 if yes) and 4: performance score.

Value

ci.diff.lo	95% confidence intervals for differences in log odds of transition	
test.diff.lo	Test statistic for differences in log odds	
test.diff.lo.pvalue		
	p-value for testing for differences in log odds	
ci.diff.lor	95% confidence intervals for differences in log odds ratios	
test.diff.lo	Test statistic for differences in log odds ratios	
test.diff.lo.pv	value	
	p-value for testing for differences in log odds ratios	
ci.diff.ri.1	95% confidence intervals for relative importance estimates - 1	
ci.diff.ri.2	95% confidence intervals for relative importance estimates - 2	
ci.diff.ri.avg	95% confidence intervals for relative importance estimates - average	

Author(s)

Christiana Kartsonaki

References

Kartsonaki, C., Jackson, M. and Cox, D. R. (2013). Primary and secondary effects: Some methodological issues, in Jackson, M. (ed.) Determined to succeed?, Stanford: Stanford University Press.

Erikson, R., Goldthorpe, J. H., Jackson, M., Yaish, M. and Cox, D. R. (2005) On Class Differentials in Educational Attainment. Proceedings of the National Academy of Sciences, 102: 9730-9733

Jackson, M., Erikson, R., Goldthorpe, J. H. and Yaish, M. (2007) Primary and secondary effects in class differentials in educational attainment: The transition to A-level courses in England and Wales. Acta Sociologica, 50 (3): 211-229

Examples

```
# generate two datasets
set.seed(1)
data1 <- data.frame(seq(1:10), rep(c(1, 2), length.out = 10),</pre>
c(rep(0, times = 3), rep(1, times = 7)),
c(rnorm(4, 0, 1), rnorm(4, 0.5, 1), NA, NA))
data2 <- data.frame(seq(1:10), rep(c(1, 2), length.out = 10),</pre>
c(rep(0, times = 5), rep(1, times = 5)),
c(rnorm(5, 1, 1), rnorm(5, 0.5, 1)))
# run function
compare.relimp(data1, data2)
```

create.classdata Create data frames for each class

Description

Takes a data frame and creates a list of data frames by splitting the data by the factor "class".

Usage

```
create.classdata(dataset)
```

Arguments

dataset	A data frame produced by prepare.dataset.
ualasel	A data frame produced by prepare. dataset.

Value

data_class	A list with number of elements equal to the number of classes and each element
	a data frame for each class.

Author(s)

Christiana Kartsonaki

plot_transition

Examples

```
# generate a dataset
data <- data.frame(seq(1:10), rep(c(1, 2, 3), length.out = 10),
rbinom(1, n = 10, p = 0.7), c(rnorm(8, 0, 1), NA, NA))
data_clean <- prepare.data(data)
create.classdata(data_clean)
```

plot_transition Plot distributions of performance and transition propensities

Description

Plots distribution of academic performance and probabilities of transition for each class.

Usage

```
plot_transition(dataset)
```

Arguments

dataset	A data frame with 4 columns only, in the following order: 1: student's ID, 2:
	class, 3: transition (0 if not, 1 if yes) and 4: performance score.

Value

A plot of the distributions of performance and transition propensities for each class.

Author(s)

Christiana Kartsonaki

References

Erikson, R., Goldthorpe, J. H., Jackson, M., Yaish, M. and Cox, D. R. (2005) On Class Differentials in Educational Attainment. *Proceedings of the National Academy of Sciences*, **102**: 9730–9733

Kartsonaki, C., Jackson, M. and Cox, D. R. (2013). Primary and secondary effects: Some methodological issues, in Jackson, M. (ed.) *Determined to succeed?*, Stanford: Stanford University Press.

Jackson, M., Erikson, R., Goldthorpe, J. H. and Yaish, M. (2007) Primary and secondary effects in class differentials in educational attainment: The transition to A-level courses in England and Wales. *Acta Sociologica*, **50** (3): 211–229

Examples

```
# generate a dataset
set.seed(1)
data <- data.frame(seq(1:10), rep(c(1, 2), length.out = 10),
c(rep(0, times = 3), rep(1, times = 7)),
c(rnorm(4, 0, 1), rnorm(4, 0.5, 1), NA, NA))
# run function
plot_transition(data)</pre>
```

prepare.data *Prepare dataset to be used in* relative.importance

Description

Prepares datasets to be in the format required by the function relative.importance. It is automatically called by relative.importance.

Usage

prepare.data(dataset)

Arguments

dataset	A data frame with 4 columns only, in the following order: 1: student's ID, 2:
	class, 3: transition (0 if not, 1 if yes) and 4: performance score.

Value

dataset The data frame given as the argument, with column names changed and missing values removed.

Author(s)

Christiana Kartsonaki

Examples

```
# generate a dataset
data <- data.frame(seq(1:10), rep(c(1, 2, 3), length.out = 10),
rbinom(1, n = 10, p = 0.7), c(rnorm(8, 0, 1), NA, NA))
# run function
data_clean <- prepare.data(data)</pre>
```

6

print_relimp

Description

Presents various estimates for measures of educational differentials, the relative importance of primary and secondary effects and corresponding standard errors and confidence intervals.

Usage

```
print_relimp(dataset)
```

Arguments

dataset

A data frame with 4 columns only, in the following order: 1: student's ID, 2: class, 3: transition (0 if not, 1 if yes) and 4: performance score.

Value

Returns a more nicely presented version of the results given by relative.importance.

Author(s)

Christiana Kartsonaki

References

Kartsonaki, C., Jackson, M. and Cox, D. R. (2013). Primary and secondary effects: Some methodological issues, in Jackson, M. (ed.) *Determined to succeed?*, Stanford: Stanford University Press.

Erikson, R., Goldthorpe, J. H., Jackson, M., Yaish, M. and Cox, D. R. (2005) On Class Differentials in Educational Attainment. *Proceedings of the National Academy of Sciences*, **102**: 9730–9733

Jackson, M., Erikson, R., Goldthorpe, J. H. and Yaish, M. (2007) Primary and secondary effects in class differentials in educational attainment: The transition to A-level courses in England and Wales. *Acta Sociologica*, **50** (3): 211–229

See Also

relative.importance

Examples

```
# generate a dataset
set.seed(1)
data <- data.frame(seq(1:10), rep(c(1, 2, 3), length.out = 10),
rbinom(1, n = 10, p = 0.7), c(rnorm(8, 0, 1), NA, NA))
# run function
print_relimp(data)</pre>
```

relative.importance Relative importance of primary and secondary effects

Description

Calculates various estimates for measures of educational differentials, the relative importance of primary and secondary effects and corresponding standard errors and confidence intervals.

Usage

relative.importance(dataset)

Arguments

dataset	A data frame with 4 columns only, in the following order: 1: student's ID, 2:
	class, 3: transition (0 if not, 1 if yes) and 4: performance score.

Value

sample_size	Total number of individuals
no_classes	Number of classes
class_size	A list of no_classes elements, each element containing the size of each class
percentage_over	rall
	Overall percentage that made the transition
percentage_clas	3S
	A list of no_classes elements, each element containing percentage that made the transition for each class
fifty_point	50% point of transition
parameters	A data frame with the parameters of logistic regression (α,β) and normal distribution (μ,σ) for each class
transition_prob)
	A data frame with the transition probabilities
log_odds	A data frame with log odds of transition (diagonal elements: actual log odds for each class, off-diagonal: counterfactual log odds)
se_logodds	A data frame with the standard errors of the log odds of transition
ci_logodds	Approximate 95% confidence intervals for the log odds of transition
odds	Odds of transition
log_oddsratios	Log odds ratios
se_logoddsratic	DS
	Standard errors for the log odds ratios
ci_logoddsratic	DS
	Approximate 95% confidence intervals for the log odds ratios
oddsratios	Odds ratios

rel_imp_prim1	Estimates of the relative importance of primary effects using the first equation for calculating the relative importance
rel_imp_prim2	Estimates of the relative importance of primary effects using the second equation for calculating the relative importance
rel_imp_prim_a	vg
	Estimates of the relative importance of primary effects using the the average of the two equations for calculating the relative importance
rel_imp_sec1	Estimates of the relative importance of secondary effects using the first equation for calculating the relative importance
rel_imp_sec2	Estimates of the relative importance of secondary effects using the second equa- tion for calculating the relative importance
<pre>rel_imp_sec_av;</pre>	g
	Estimates of the relative importance of secondary effects using the the average of the two equations for calculating the relative importance
se.ri.1	Standard errors of the relative importance estimates given by the first equation
ci.ri.1	Approximate 95% confidence intervals for the relative importance of secondary effects given by the first equation
se.ri.2	Standard errors of the relative importance estimates given by the second equa- tion
ci.ri.2	Approximate 95% confidence intervals for the relative importance of secondary effects given by the second equation
se.ri.avg	Standard errors of the relative importance estimates given by the average of the two equations
ci.ri.avg	Approximate 95% confidence intervals for the relative importance of secondary effects given by the average of the two equations

Author(s)

Christiana Kartsonaki

References

Kartsonaki, C., Jackson, M. and Cox, D. R. (2013). Primary and secondary effects: Some methodological issues, in Jackson, M. (ed.) *Determined to succeed?*, Stanford: Stanford University Press.

Erikson, R., Goldthorpe, J. H., Jackson, M., Yaish, M. and Cox, D. R. (2005) On Class Differentials in Educational Attainment. *Proceedings of the National Academy of Sciences*, **102**: 9730–9733

Jackson, M., Erikson, R., Goldthorpe, J. H. and Yaish, M. (2007) Primary and secondary effects in class differentials in educational attainment: The transition to A-level courses in England and Wales. *Acta Sociologica*, **50** (3): 211–229

See Also

print_relimp, plot_transition

Examples

```
# generate a dataset
set.seed(1)
data <- data.frame(seq(1:10), rep(c(1, 2), length.out = 10),
    c(rep(0, times = 3), rep(1, times = 7)),
    c(rnorm(4, 0, 1), rnorm(4, 0.5, 1), NA, NA))
# run function</pre>
```

relative.importance(data)

10

Index

* package DECIDE-package, 2

compare.relimp, 3
create.classdata, 4

DECIDE (DECIDE-package), 2 DECIDE-package, 2

plot_transition, 5, 9
prepare.data, 6
print_relimp, 7, 9

relative.importance, 7, 8